

 Ecto SQL

 v3.11.3

 Table of contents

 	Changelog for v3.x

 	

 	Modules

 	Ecto.Adapters.SQL

 	Ecto.Adapters.SQL.Sandbox

 	Ecto.Migration

 	Ecto.Migrator

 	Built-in adapters

 	Ecto.Adapters.MyXQL

 	Ecto.Adapters.Postgres

 	Ecto.Adapters.Tds

 	TDS Types

 	Tds.Ecto.UUID

 	Tds.Ecto.VarChar

 	Adapter specification

 	Ecto.Adapter.Migration

 	Ecto.Adapter.Structure

 	Ecto.Adapters.SQL.Connection

 	Ecto.Migration.Command

 	Ecto.Migration.Constraint

 	Ecto.Migration.Index

 	Ecto.Migration.Reference

 	Ecto.Migration.Table

 	Mix Tasks

 	mix ecto.dump

 	mix ecto.gen.migration

 	mix ecto.load

 	mix ecto.migrate

 	mix ecto.migrations

 	mix ecto.rollback

Changelog for v3.x

 v3.11.3 (2024-06-13)

 Enhancements

	[mysql] Relax myxql dependency

 v3.11.2 (2024-05-18)

 Enhancements

	[postgres] Relax postgrex dependency

 v3.11.1 (2023-12-07)

 Enhancements

	[Ecto.Migration] Add :generated option to columns
	[Ecto.Migration] Add index storage parameters (via :options) for Postgres

 Bug fixes

	[Ecto.Migrations] Support :prefix on index rename
	[Ecto.Migrator] Stop runner if migration fails

 v3.11.0 (2023-11-14)

 Enhancements

	[mix ecto.migrate] Add --log-level to ecto.migrate
	[mix ecto.rollback] Add --log-level to ecto.rollback
	[sql] Support fragment splicing
	[sql] Support data-modifying CTEs
	[sql] Add source to insert_ll, insert, update, and delete telemetry events
	[tds] Include exec before stored procedure for TDS (for earlier SQLServer versions)

 Bug fixes

	[mix ecto.migrate] Read existing dynamic repo in migrations
	[mix ecto.migrate] Don't add primary key on remove migration

 v3.10.2 (2023-08-21)

 Enhancements

	[migrations] Handle from: {reference, opts} in FK migrations
	[mysql] Support MariaDB versioned tables

 Bug fixes

	[migrations] Don't add comment to removed columns
	[migrations] Ensure module is loaded before checking for migration
	[mysql] Fix for casting boolean values in MySQL

 v3.10.1 (2023-04-11)

 Enhancements

	[postgres] Allow Postgrex v0.17.x

 v3.10.0 (2023-04-10)

 Enhancements

	[Ecto.Migrator] Allow running the migrator in your supervision tree
	[Ecto.Migrator] Allow renaming an index
	[Ecto.Migrator] Add execute_file/1 and execute_file/2
	[mix ecto.dump] Support dumping multiple prefixes on PostgreSQL and MySQL
	[mysql] Improve constraint matching support on alternative implementations
	[postgres] Allow CASCADE when dropping a constraint on postgres

 Bug fixes

	[mix ecto.load] Suppress query logs in mix ecto.load when quiet flag is given

 v3.9.2 (2022-12-20)

 Enhancements

	[migrator] Raise if target version in to/exclusive_to is not an integer
	[mysql] Add support for cross lateral joins
	[postgres] Add support for cross lateral joins
	[postgres] Add support for materialized CTEs
	[telemetry] Send cast_params metadata to telemetry events

 v3.9.1 (2022-11-18)

 Enhancements

	[mysql] Support :format option on explain
	[postgres] Permit outer joins when using update_all
	[sql] Add support for ONLY in index creation

 Bug fixes

	[mysql] Ensure locks are quoted
	[mysql] Do not crash on mix ecto.drop when the database is unreachable
	[postgres] Fix empty array compare in PostgreSQL
	[sql] Allow function sources whose name begins with 'select'

 v3.9.0 (2022-09-27)

 Enhancements

	[migrations] Support primary_key configuration options in table
	[migrations] Add :nulls_distinct option for unique indexes
	[postgres] Support the use of advisory locks for migrations
	[sql] Add dump_cmd to postgrex and myxql adapters
	[sql] Log human-readable UUIDs by using pre-dumped query parameters
	[sql] Support select aliases from selected_as/1 and selected_as/2
	[telemetry] Emit schema_migration: true under telemetry_options

 v3.8.3 (2022-06-04)

 Enhancements

	[sql] Implement literal/1 support in fragments

 v3.8.2 (2022-05-18)

 Bug fixes

	[postgres] Fix possible breaking change on json_extract_path for boolean values introduced in v3.8.0
	[sql] Colorize stacktrace and use : before printing line number

 v3.8.1 (2022-04-29)

 Bug fixes

	[mysql] Raise on a subquery with parameter on MySQL join
	[sql] Do not invoke dynamic repositories in direct Ecto.Adapters.SQL operations

 v3.8.0 (2022-04-26)

 Enhancements

	[migrations] Support --to-exclusive in mix ecto.migrate and mix ecto.rollback
	[mysql] Add :comment support on MySQL migrations
	[postgres] Support :prepare option per operation
	[postgres] Optimize json_extract_path comparisons in PostgreSQL
	[sql] Optionally log last known call, publish stacktrace in telemetry
	[telemetry] Include :repo option in telemetry events

 Bug fixes

	[sql] Ensure :timeout option is respected in Ecto.Adapters.SQL.explain/3

 v3.7.2 (2022-01-23)

 Enhancements

	[adapters] Support latest myxql and postgrex

 v3.7.1 (2021-10-12)

 Enhancements

	[migrations] Add :cascade option to drop
	[migrations] Support --prefix in mix ecto.migrations
	[migrations] Add --log-migrator-sql and --log-migrations-sql
	[mysql] Cache more insert/update queries and allow :cache_statement to be set
	[mssql] Support more recent tds versions

 Bug fixes

	[migrations] Consider the database prefix when locking tables

 v3.7.0 (2021-08-19)

 Enhancements

	[mysql] Support lateral joins

 Bug fixes

	[sql] Fix CTE subqueries not finding parent bindings

 v3.6.2 (2021-05-28)

 Bug fixes

	[migration] Improve error message on invalid migration type
	[postgres] Avoid duplicate order_by with distinct
	[sql] Implement new checked_out? callback required by latest Ecto

 v3.6.1 (2021-04-12)

 Bug fixes

	[migrations] Ensure migration_source option is respected in PostgreSQL adapter

 v3.6.0 (2021-04-03)

 Bug fixes

	[migrations] Fix a bug where the migration lock would not apply on the first migration (when the schema migrations table is empty). This fix changes how migration tables are locked, therefore let us know of any possible regressions in your workflow

 Enhancements

	[migrations] Allow generating migrations from within umbrella app
	[postgres] Add :format option to PostgreSQL explain
	[postgres] Support :socket_dir connection option when using mix ecto.load or mix ecto.dump
	[sandbox] Support locally registered processes in allow/3
	[storage] Do not fail storage_up if the user has access to an already-created database
	[tds] Support for :inner_lateral and :left_lateral

 v3.5.4 (2020-01-20)

 Enhancements

	[mysql] Support defaults for JSON columns
	[postgres] Allow Postgrex v1.0

 v3.5.3 (2020-10-27)

 Enhancements

	[migrations] Pass :schema_migration option to repo operations for prepare_query checks
	[psql] Support :force_drop configuration to force a DB to be dropped

 v3.5.2 (2020-10-24)

 Enhancements

	[migrations] Support :with option in references for composite foreign keys
	[migrations] Support :match option in references
	[tds] Support TDS 3-part and 4-part prefixes

 v3.5.1 (2020-10-12)

 Enhancements

	[tds] Support explain plan for the TDS adapter

 Bug fix

	[migrations] Reload all migrations once the lock is free to avoid running the same migration more than once
	[query] Support nested subqueries

 v3.5.0 (2020-10-03)

 Enhancements

	[migrations] Add option to skip schema migrations table checks
	[migrations] Add :migration_repo configuration to allow a different repository to host the schema migrations
	[migrations] Support validate: false on references and constraints
	[migrations] Accept :migration_primary_key as false and add :migration_foreign_key repo config
	[postgres] Support for :identity key types in Postgres 10 or later
	[postgres] Use IF NOT EXIST when creating index with create_if_not_exists, this requires PG 9.5+ or later
	[repo] Support Repo.explain(:all | :update_all | :delete_all, query) for Ecto adapters

	[sandbox] Allow for dynamic repos to be checked out in sandbox

 Bug fixes

	[migrations] Flush migration commands before executing before_commit callback
	[migrations] Do not swallow errors when migration lock is disabled

 v3.4.5 (2020-07-05)

 Bug fixes

	[ecto] Fix warnings on Elixir v1.11
	[migrations] Migration prefix should have higher preference than default_options

 v3.4.4 (2020-05-19)

 Enhancements

	[sandbox] Add Ecto.Adapters.SQL.start_owner!/2 and Ecto.Adapters.SQL.stop_owner/1
	[myxql] Decode BIT columns when using MyXQL and :boolean type
	[migrations] Use one line per migration in the schema dump

 v3.4.3 (2020-04-27)

 Bug fixes

	[ecto] Support as and parent_as from Ecto v3.4.3+
	[ecto] Support x in subquery(query) from Ecto v3.4.3+

 v3.4.2 (2020-04-02)

 Bug fixes

	[myxql] A binary with size should be a varbinary
	[mssql] A binary without size should be a varbinary(max)

 v3.4.1 (2020-03-25)

 Bug fixes

	[myxql] Assume the reference does not change in MyXQL and prepare for v0.4.0

 v3.4.0 (2020-03-24)

 Enhancements

	[adapters] Support Ecto's v3.4 json_extract_path/2
	[migrations] Support multiple migration paths to be given with --migration-path
	[mssql] Add built-in support to MSSQL via the TDS adapter
	[repo] Support custom options on telemetry

 v3.3.4 (2020-02-14)

 Enhancements

	[adapters] Support fragments in locks
	[migration] Add :include option to support covering indexes

 v3.3.3 (2020-01-28)

 Enhancements

	[myxql] Allow not setting the encoding when creating a database

 Bug fixes

	[myxql] Removing prefixed table name from constraints on latest MySQL versions
	[sql] Fix precedence of is_nil when inside a comparison operator

 v3.3.2 (2019-12-15)

 Bug fixes

	[adapters] Start StorageSupervisor before using it

 v3.3.1 (2019-12-15)

 Bug fixes

	[adapters] Do not leak PIDs on storage commands
	[migrations] Use :migration_primary_key in create/1

 v3.3.0 (2019-12-11)

 Enhancements

	[ecto] Upgrade and support Ecto v3.3
	[repo] Include :idle_time on telemetry measurements
	[migration] Support anonymous functions in Ecto.Migration.execute/2

 Bug fixes

	[migration] Ensure that flush() will raise on rollback if called from change/0

 v3.2.2 (2019-11-25)

 Enhancements

	[mysql] Support myxql v0.3

 v3.2.1 (2019-11-02)

 Enhancements

	[migration] Support anonymous functions in execute

 Bug fixes

	[mix ecto.create] Change default charset in MyXQL to utf8mb4

 v3.2.0 (2019-09-07)

This new version requires Elixir v1.6+. Note also the previously soft-deprecated Ecto.Adapters.MySQL has been removed in favor of Ecto.Adapters.MyXQL. We announced the intent to remove Ecto.Adapters.MySQL back in v3.0 and Ecto.Adapters.MyXQL has been tested since then and ready for prime time since v3.1.

 Enhancements

	[sql] Use get_dynamic_repo on SQL-specific functions
	[sql] Respect Ecto.Type.embed_as/2 choice when loading/dumping embeds (Ecto 3.2+ compat)
	[sql] Support CTE expressions (Ecto 3.2+ compat)

 Bug fixes

	[sql] Fix generated "COMMENT ON INDEX" for PostgreSQL

 v3.1.6 (2019-06-27)

 Enhancements

	[sql] Set cache_statement for insert_all

 v3.1.5 (2019-06-13)

 Enhancements

	[migration] Add @disable_migration_lock to be better handle concurrent indexes
	[mysql] Set cache_statement for inserts

 Deprecations

	[mysql] Deprecate Ecto.Adapters.MySQL

 v3.1.4 (2019-05-28)

 Enhancements

	[migrator] Print warning message if concurrent indexes are used with migration lock

 v3.1.3 (2019-05-19)

 Enhancements

	[migrator] Add --migrations-path to ecto.migrate/ecto.rollback/ecto.migrations Mix tasks

 Bug fixes

	[migrator] Make sure an unboxed run is performed when running migrations with the ownership pool

 v3.1.2 (2019-05-11)

 Enhancements

	[migrator] Add Ecto.Migrator.with_repo/2 to start repo and apps
	[mix] Add --skip-if-loaded for ecto.load
	[sql] Add Ecto.Adapters.SQL.table_exists?/2

 v3.1.1 (2019-04-16)

 Bug fixes

	[repo] Fix backwards incompatible change in Telemetry metadata

 v3.1.0 (2019-04-02)

v3.1 requires Elixir v1.5+.

 Enhancements

	[mysql] Introduce Ecto.Adapters.MyXQL as an alternative library for MySQL
	[migrations] Run all migrations in subdirectories
	[repo] Update to Telemetry v0.4.0 (note the measurements value differ from previous versions)

 Bug fixes

	[sandbox] Respect :ownership_timeout repo configuration on SQL Sandbox
	[migrations] Commit and relock after every migration to avoid leaving the DB in an inconsistent state under certain failures

 Backwards incompatible changes

	[migrations] If you are creating indexes concurrently, you need to disable the migration lock: config :app, App.Repo, migration_lock: nil. This will migrations behave the same way as they did in Ecto 2.0.

 v3.0.5 (2019-02-05)

 Enhancements

	[repo] Add :repo and :type keys to telemetry events
	[migrations] Add :add_if_not_exists and :remove_if_exists to columns in migrations

 Bug fixes

	[migrations] Load all migrations before running them
	[sandbox] Include :queue_target and :queue_interval in SQL Sandbox checkout

 v3.0.4 (2018-12-31)

 Enhancements

	[repo] Bump telemetry dependency
	[migrations] Perform strict argument parsing in ecto.migrate, ecto.rollback, ecto.load and ecto.dump

 Bug fixes

	[migrations] Do not log migration versions query

 Deprecations

	[repo] Telemetry.attach/5 and Telemetry.attach_many/5 are deprecated in favor of :telemetry.attach/5 and :telemetry.attach_many/5

 v3.0.3 (2018-11-29)

 Enhancements

	[migration] Support after_begin and before_commit migration callbacks
	[migration] Add :prefix option to references/2

 Bug fixes

	[migration] Do not start a transaction for migrated versions if there is no :migration_lock
	[migration] Fix removing an reference column inside alter table
	[migration] Warn on removed :pool_timeout option

 v3.0.2 (2018-11-20)

 Enhancements

	[query] Support Ecto.Query in insert_all values
	[migration] Add Ecto.Migration.repo/0

 v3.0.1 (2018-11-17)

 Enhancements

	[migrations] Support drop_if_exists for constraints

 Bug fixes

	[migrations] Only commit migration transaction if migration can be inserted into the DB
	[migrations] Do not run migrations from _build when using Mix
	[migrations] Improve errors when checking in already committed sandboxes
	[mysql] Do not pass nil for --user to mysqldump
	[package] Require Ecto 3.0.2 with bug fixes
	[package] Require Mariaex 0.9.1 which fixes a bug when used with Ecto 3.0.2
	[sandbox] Raise when using sandbox on non-sandbox pools

 v3.0.0 (2018-10-29)

	Initial release

Ecto.Adapters.SQL

This application provides functionality for working with
SQL databases in Ecto.

 Built-in adapters

By default, we support the following adapters:
	Ecto.Adapters.Postgres for Postgres
	Ecto.Adapters.MyXQL for MySQL
	Ecto.Adapters.Tds for SQLServer

 Additional functions

If your Ecto.Repo is backed by any of the SQL adapters above,
this module will inject additional functions into your repository:
	disconnect_all(interval, options \\ []) -
 shortcut for Ecto.Adapters.SQL.disconnect_all/3

	explain(type, query, options \\ []) -
 shortcut for Ecto.Adapters.SQL.explain/4

	query(sql, params, options \\ []) -
 shortcut for Ecto.Adapters.SQL.query/4

	query!(sql, params, options \\ []) -
 shortcut for Ecto.Adapters.SQL.query!/4

	query_many(sql, params, options \\ []) -
 shortcut for Ecto.Adapters.SQL.query_many/4

	query_many!(sql, params, options \\ []) -
 shortcut for Ecto.Adapters.SQL.query_many!/4

	to_sql(type, query) -
 shortcut for Ecto.Adapters.SQL.to_sql/3

Generally speaking, you must invoke those functions directly from
your repository, for example: MyApp.Repo.query("SELECT true").
You can also invoke them directly from Ecto.Adapters.SQL, but
keep in mind that in such cases features such as "dynamic repositories"
won't be available.

 Migrations

ecto_sql supports database migrations. You can generate a migration
with:
$ mix ecto.gen.migration create_posts

This will create a new file inside priv/repo/migrations with the
change function. Check Ecto.Migration for more information.
To interface with migrations, developers typically use mix tasks:
	mix ecto.migrations - lists all available migrations and their status
	mix ecto.migrate - runs a migration
	mix ecto.rollback - rolls back a previously run migration

If you want to run migrations programmatically, see Ecto.Migrator.

 SQL sandbox

ecto_sql provides a sandbox for testing. The sandbox wraps each
test in a transaction, making sure the tests are isolated and can
run concurrently. See Ecto.Adapters.SQL.Sandbox for more information.

 Structure load and dumping

If you have an existing database, you may want to dump its existing
structure and make it reproducible from within Ecto. This can be
achieved with two Mix tasks:
	mix ecto.load - loads an existing structure into the database
	mix ecto.dump - dumps the existing database structure to the filesystem

For creating and dropping databases, see mix ecto.create
and mix ecto.drop that are included as part of Ecto.

 Custom adapters

Developers can implement their own SQL adapters by using
Ecto.Adapters.SQL and by implementing the callbacks required
by Ecto.Adapters.SQL.Connection for handling connections and
performing queries. The connection handling and pooling for SQL
adapters should be built using the DBConnection library.
When using Ecto.Adapters.SQL, the following options are required:
	:driver (required) - the database driver library.
For example: :postgrex

 Summary

 Types

 Ecto.Adapters.SQL.Sandbox - Ecto SQL v3.11.3

Ecto.Adapters.SQL.Sandbox

A pool for concurrent transactional tests.
The sandbox pool is implemented on top of an ownership mechanism.
When started, the pool is in automatic mode, which means the
repository will automatically check connections out as with any
other pool.
The mode/2 function can be used to change the pool mode from
automatic to either manual or shared. In the latter two modes,
the connection must be explicitly checked out before use.
When explicit checkouts are made, the sandbox will wrap the
connection in a transaction by default and control who has
access to it. This means developers have a safe mechanism for
running concurrent tests against the database.

 Database support

While both PostgreSQL and MySQL support SQL Sandbox, only PostgreSQL
supports concurrent tests while running the SQL Sandbox. Therefore, do
not run concurrent tests with MySQL as you may run into deadlocks due to
its transaction implementation.

 Example

The first step is to configure your database to use the
Ecto.Adapters.SQL.Sandbox pool. You set those options in your
config/config.exs (or preferably config/test.exs) if you
haven't yet:
config :my_app, Repo,
 pool: Ecto.Adapters.SQL.Sandbox
Now with the test database properly configured, you can write
transactional tests:
At the end of your test_helper.exs
Set the pool mode to manual for explicit checkouts
Ecto.Adapters.SQL.Sandbox.mode(Repo, :manual)

defmodule PostTest do
 # Once the mode is manual, tests can also be async
 use ExUnit.Case, async: true

 setup do
 # Explicitly get a connection before each test
 :ok = Ecto.Adapters.SQL.Sandbox.checkout(Repo)
 end

 test "create post" do
 # Use the repository as usual
 assert %Post{} = Repo.insert!(%Post{})
 end
end

 Collaborating processes

The example above is straight-forward because we have only
a single process using the database connection. However,
sometimes a test may need to interact with multiple processes,
all using the same connection so they all belong to the same
transaction.
Before we discuss solutions, let's see what happens if we try
to use a connection from a new process without explicitly
checking it out first:
setup do
 # Explicitly get a connection before each test
 :ok = Ecto.Adapters.SQL.Sandbox.checkout(Repo)
end

test "calls worker that runs a query" do
 GenServer.call(MyApp.Worker, :run_query)
end
The test above will fail with an error similar to:
** (DBConnection.OwnershipError) cannot find ownership process for #PID<0.35.0>
That's because the setup block is checking out the connection only
for the test process. Once the worker attempts to perform a query,
there is no connection assigned to it and it will fail.
The sandbox module provides two ways of doing so, via allowances or
by running in shared mode.

 Allowances

The idea behind allowances is that you can explicitly tell a process
which checked out connection it should use, allowing multiple processes
to collaborate over the same connection. Let's give it a try:
test "calls worker that runs a query" do
 allow = Process.whereis(MyApp.Worker)
 Ecto.Adapters.SQL.Sandbox.allow(Repo, self(), allow)
 GenServer.call(MyApp.Worker, :run_query)
end
And that's it, by calling allow/3, we are explicitly assigning
the parent's connection (i.e. the test process' connection) to
the task.
Because allowances use an explicit mechanism, their advantage
is that you can still run your tests in async mode. The downside
is that you need to explicitly control and allow every single
process. This is not always possible. In such cases, you will
want to use shared mode.

 Shared mode

Shared mode allows a process to share its connection with any other
process automatically, without relying on explicit allowances.
Let's change the example above to use shared mode:
setup do
 # Explicitly get a connection before each test
 :ok = Ecto.Adapters.SQL.Sandbox.checkout(Repo)
 # Setting the shared mode must be done only after checkout
 Ecto.Adapters.SQL.Sandbox.mode(Repo, {:shared, self()})
end

test "calls worker that runs a query" do
 GenServer.call(MyApp.Worker, :run_query)
end
By calling mode({:shared, self()}), any process that needs
to talk to the database will now use the same connection as the
one checked out by the test process during the setup block.
Make sure to always check a connection out before setting the mode
to {:shared, self()}.
The advantage of shared mode is that by calling a single function,
you will ensure all upcoming processes and operations will use that
shared connection, without a need to explicitly allow them. The
downside is that tests can no longer run concurrently in shared mode.
Also, beware that if the test process terminates while the worker is
using the connection, the connection will be taken away from the worker,
which will error. Therefore it is important to guarantee the work is done
before the test concludes. In the example above, we are using a call,
which is synchronous, avoiding the problem, but you may need to explicitly
flush the worker or terminate it under such scenarios in your tests.

 Summing up

There are two mechanisms for explicit ownerships:
	Using allowances - requires explicit allowances via allow/3.
Tests may run concurrently.

	Using shared mode - does not require explicit allowances.
Tests cannot run concurrently.

 FAQ

When running the sandbox mode concurrently, developers may run into
issues we explore in the upcoming sections.

 "owner exited"

In some situations, you may see error reports similar to the one below:
23:59:59.999 [error] Postgrex.Protocol (#PID<>) disconnected:
 ** (DBConnection.Error) owner #PID<> exited
Client #PID<> is still using a connection from owner
Such errors are usually followed by another error report from another
process that failed while executing a database query.
To understand the failure, we need to answer the question: who are the
owner and client processes? The owner process is the one that checks
out the connection, which, in the majority of cases, is the test process,
the one running your tests. In other words, the error happens because
the test process has finished, either because the test succeeded or
because it failed, while the client process was trying to get information
from the database. Since the owner process, the one that owns the
connection, no longer exists, Ecto will check the connection back in
and notify the client process using the connection that the connection
owner is no longer available.
This can happen in different situations. For example, imagine you query
a GenServer in your test that is using a database connection:
test "gets results from GenServer" do
 {:ok, pid} = MyAppServer.start_link()
 Ecto.Adapters.SQL.Sandbox.allow(Repo, self(), pid)
 assert MyAppServer.get_my_data_fast(timeout: 1000) == [...]
end
In the test above, we spawn the server and allow it to perform database
queries using the connection owned by the test process. Since we gave
a timeout of 1 second, in case the database takes longer than one second
to reply, the test process will fail, due to the timeout, making the
"owner down" message to be printed because the server process is still
waiting on a connection reply.
In some situations, such failures may be intermittent. Imagine that you
allow a process that queries the database every half second:
test "queries periodically" do
 {:ok, pid} = PeriodicServer.start_link()
 Ecto.Adapters.SQL.Sandbox.allow(Repo, self(), pid)
 # more tests
end
Because the server is querying the database from time to time, there is
a chance that, when the test exits, the periodic process may be querying
the database, regardless of test success or failure.

 "owner timed out because it owned the connection for longer than Nms"

In some situations, you may see error reports similar to the one below:
09:56:43.081 [error] Postgrex.Protocol (#PID<>) disconnected:
 ** (DBConnection.ConnectionError) owner #PID<> timed out
 because it owned the connection for longer than 120000ms
If you have a long running test (or you're debugging with IEx.pry),
the timeout for the connection ownership may be too short. You can
increase the timeout by setting the :ownership_timeout options for
your repo config in config/config.exs (or preferably in config/test.exs):
config :my_app, MyApp.Repo,
 ownership_timeout: NEW_TIMEOUT_IN_MILLISECONDS
The :ownership_timeout option is part of DBConnection.Ownership
and defaults to 120000ms. Timeouts are given as integers in milliseconds.
Alternately, if this is an issue for only a handful of long-running tests,
you can pass an :ownership_timeout option when calling
Ecto.Adapters.SQL.Sandbox.checkout/2 instead of setting a longer timeout
globally in your config.

 Deferred constraints

Some databases allow to defer constraint validation to the transaction
commit time, instead of the particular statement execution time. This
feature, for instance, allows for a cyclic foreign key referencing.
Since the SQL Sandbox mode rolls back transactions, tests might report
false positives because deferred constraints are never checked by the
database. To manually force deferred constraints validation when using
PostgreSQL use the following line right at the end of your test case:
Repo.query!("SET CONSTRAINTS ALL IMMEDIATE")

 Database locks and deadlocks

Since the sandbox relies on concurrent transactional tests, there is
a chance your tests may trigger deadlocks in your database. This is
specially true with MySQL, where the solutions presented here are not
enough to avoid deadlocks and therefore making the use of concurrent tests
with MySQL prohibited.
However, even on databases like PostgreSQL, performance degradations or
deadlocks may still occur. For example, imagine a "users" table with a
unique index on the "email" column. Now consider multiple tests are
trying to insert the same user email to the database. They will attempt
to retrieve the same database lock, causing only one test to succeed and
run while all other tests wait for the lock.
In other situations, two different tests may proceed in a way that
each test retrieves locks desired by the other, leading to a situation
that cannot be resolved, a deadlock. For instance:
Transaction 1: Transaction 2:
begin
 begin
update posts where id = 1
 update posts where id = 2
 update posts where id = 1
update posts where id = 2
 deadlock
There are different ways to avoid such problems. One of them is
to make sure your tests work on distinct data. Regardless of
your choice between using fixtures or factories for test data,
make sure you get a new set of data per test. This is specially
important for data that is meant to be unique like user emails.
For example, instead of:
def insert_user do
 Repo.insert!(%User{email: "sample@example.com"})
end
prefer:
def insert_user do
 Repo.insert!(%User{email: "sample-#{counter()}@example.com"})
end

defp counter do
 System.unique_integer([:positive])
end
In fact, avoiding unique emails like above can also have a positive
impact on the test suite performance, as it reduces contention and
wait between concurrent tests. We have heard reports where using
dynamic values for uniquely indexed columns, as we did for email
above, made a test suite run between 2x to 3x faster.
Deadlocks may happen in other circumstances. If you believe you
are hitting a scenario that has not been described here, please
report an issue so we can improve our examples. As a last resort,
you can always disable the test triggering the deadlock from
running asynchronously by setting "async: false".

 Summary

 Functions

 Ecto.Migration - Ecto SQL v3.11.3

Ecto.Migration behaviour

Migrations are used to modify your database schema over time.
This module provides many helpers for migrating the database,
allowing developers to use Elixir to alter their storage in
a way that is database independent.
Migrations typically provide two operations: up and down,
allowing us to migrate the database forward or roll it back
in case of errors.
In order to manage migrations, Ecto creates a table called
schema_migrations in the database, which stores all migrations
that have already been executed. You can configure the name of
this table with the :migration_source configuration option
and the name of the repository that manages it with :migration_repo.
Ecto locks the schema_migrations table when running
migrations, guaranteeing two different servers cannot run the same
migration at the same time.

 Creating your first migration

Migrations are defined inside the "priv/REPO/migrations" where REPO
is the last part of the repository name in underscore. For example,
migrations for MyApp.Repo would be found in "priv/repo/migrations".
For MyApp.CustomRepo, it would be found in "priv/custom_repo/migrations".
Each file in the migrations directory has the following structure:
NUMBER_NAME.exs
The NUMBER is a unique number that identifies the migration. It is
usually the timestamp of when the migration was created. The NAME
must also be unique and it quickly identifies what the migration
does. For example, if you need to track the "weather" in your system,
you can start a new file at "priv/repo/migrations/20190417140000_add_weather_table.exs"
that will have the following contents:
defmodule MyRepo.Migrations.AddWeatherTable do
 use Ecto.Migration

 def up do
 create table("weather") do
 add :city, :string, size: 40
 add :temp_lo, :integer
 add :temp_hi, :integer
 add :prcp, :float

 timestamps()
 end
 end

 def down do
 drop table("weather")
 end
end
The up/0 function is responsible to migrate your database forward.
the down/0 function is executed whenever you want to rollback.
The down/0 function must always do the opposite of up/0.
Inside those functions, we invoke the API defined in this module,
you will find conveniences for managing tables, indexes, columns,
references, as well as running custom SQL commands.
To run a migration, we generally use Mix tasks. For example, you can
run the migration above by going to the root of your project and
typing:
$ mix ecto.migrate

You can also roll it back by calling:
$ mix ecto.rollback --step 1

Note rollback requires us to say how much we want to rollback.
On the other hand, mix ecto.migrate will always run all pending
migrations.
In practice, we don't create migration files by hand either, we
typically use mix ecto.gen.migration to generate the file with
the proper timestamp and then we just fill in its contents:
$ mix ecto.gen.migration add_weather_table

For the rest of this document, we will cover the migration APIs
provided by Ecto. For a in-depth discussion of migrations and how
to use them safely within your application and data, see the
Safe Ecto Migrations guide.

 Mix tasks

As seen above, Ecto provides many Mix tasks to help developers work
with migrations. We summarize them below:
	mix ecto.gen.migration - generates a
migration that the user can fill in with particular commands
	mix ecto.migrate - migrates a repository
	mix ecto.migrations - shows all migrations and their status
	mix ecto.rollback - rolls back a particular migration

Run mix help COMMAND for more information on a particular command.
For a lower level API for running migrations, see Ecto.Migrator.

 Change

Having to write both up/0 and down/0 functions for every
migration is tedious and error prone. For this reason, Ecto allows
you to define a change/0 callback with all of the code you want
to execute when migrating and Ecto will automatically figure out
the down/0 for you. For example, the migration above can be
written as:
defmodule MyRepo.Migrations.AddWeatherTable do
 use Ecto.Migration

 def change do
 create table("weather") do
 add :city, :string, size: 40
 add :temp_lo, :integer
 add :temp_hi, :integer
 add :prcp, :float

 timestamps()
 end
 end
end
However, note that not all commands are reversible. Trying to rollback
a non-reversible command will raise an Ecto.MigrationError.
A notable command in this regard is execute/2, which is reversible in
change/0 by accepting a pair of plain SQL strings. The first is run on
forward migrations (up/0) and the second when rolling back (down/0).
If up/0 and down/0 are implemented in a migration, they take precedence,
and change/0 isn't invoked.

 Field Types

The Ecto primitive types are mapped to the appropriate database
type by the various database adapters. For example, :string is
converted to :varchar, :binary to :bytea or :blob, and so on.
In particular, note that:
	the :string type in migrations by default has a limit of 255 characters.
If you need more or less characters, pass the :size option, such
as add :field, :string, size: 10. If you don't want to impose a limit,
most databases support a :text type or similar

	the :binary type in migrations by default has no size limit. If you want
to impose a limit, pass the :size option accordingly. In MySQL, passing
the size option changes the underlying field from "blob" to "varbinary"

Any other type will be given as is to the database. For example, you
can use :text, :char, or :varchar as types. Types that have spaces
in their names can be wrapped in double quotes, such as :"int unsigned",
:"time without time zone", etc.

 Executing and flushing

Instructions inside of migrations are not executed immediately. Instead
they are performed after the relevant up, change, or down callback
terminates.
However, in some situations you may want to guarantee that all of the
previous steps have been executed before continuing. This is useful when
you need to apply a set of changes to the table before continuing with the
migration. This can be done with flush/0:
def up do
 ...
 flush()
 ...
end
However flush/0 will raise if it would be called from change function when doing a rollback.
To avoid that we recommend to use execute/2 with anonymous functions instead.
For more information and example usage please take a look at execute/2 function.

 Repo configuration

 Migrator configuration

These options configure where Ecto stores and how Ecto runs your migrations:
	:migration_source - Version numbers of migrations will be saved in a
table named schema_migrations by default. You can configure the name of
the table via:
config :app, App.Repo, migration_source: "my_migrations"

	:migration_lock - By default, Ecto will lock the migration source to throttle
multiple nodes to run migrations one at a time. You can disable the migration_lock
by setting it to false. You may also select a different locking strategy if
supported by the adapter. See the adapter docs for more information.
config :app, App.Repo, migration_lock: false

Or use a different locking strategy. For example, Postgres can use advisory
locks but be aware that your database configuration might not make this a good
fit. See the Ecto.Adapters.Postgres for more information:
config :app, App.Repo, migration_lock: :pg_advisory_lock

	:migration_repo - The migration repository is where the table managing the
migrations will be stored (migration_source defines the table name). It defaults
to the given repository itself but you can configure it via:
config :app, App.Repo, migration_repo: App.MigrationRepo

	:migration_cast_version_column - Ecto uses a version column of type
bigint for the underlying migrations table (usually schema_migrations). By
default, Ecto doesn't cast this to a different type when reading or writing to
the database when running migrations. However, some web frameworks store this
column as a string. For compatibility reasons, you can set this option to true,
which makes Ecto perform a CAST(version AS int). This used to be the default
behavior up to Ecto 3.10, so if you are upgrading to 3.11+ and want to keep the
old behavior, set this option to true.

	:priv - the priv directory for the repo with the location of important assets,
such as migrations. For a repository named MyApp.FooRepo, :priv defaults to
"priv/foo_repo" and migrations should be placed at "priv/foo_repo/migrations"

	:start_apps_before_migration - A list of applications to be started before
running migrations. Used by Ecto.Migrator.with_repo/3 and the migration tasks:
config :app, App.Repo, start_apps_before_migration: [:ssl, :some_custom_logger]

 Migrations configuration

These options configure the default values used by migrations. It is generally
discouraged to change any of those configurations after your database is deployed
to production, as changing these options will retroactively change how all
migrations work.
	:migration_primary_key - By default, Ecto uses the :id column with type
:bigserial, but you can configure it via:
config :app, App.Repo, migration_primary_key: [name: :uuid, type: :binary_id]

config :app, App.Repo, migration_primary_key: false
For Postgres version >= 10 :identity key may be used.
By default, all :identity column will be bigints. You may provide optional
parameters for :start_value and :increment to customize the created
sequence. Config example:
config :app, App.Repo, migration_primary_key: [type: :identity]

	:migration_foreign_key - By default, Ecto uses the primary_key type
for foreign keys when references/2 is used, but you can configure it via:
config :app, App.Repo, migration_foreign_key: [column: :uuid, type: :binary_id]

	:migration_timestamps - By default, Ecto uses the :naive_datetime as the type,
:inserted_at as the name of the column for storing insertion times, :updated_at as
the name of the column for storing last-updated-at times, but you can configure it
via:
config :app, App.Repo, migration_timestamps: [
 type: :utc_datetime,
 inserted_at: :created_at,
 updated_at: :changed_at
]

	:migration_default_prefix - Ecto defaults to nil for the database prefix for
migrations, but you can configure it via:
config :app, App.Repo, migration_default_prefix: "my_prefix"

 Comments

Migrations where you create or alter a table support specifying table
and column comments. The same can be done when creating constraints
and indexes. Not all databases support this feature.
def up do
 create index("posts", [:name], comment: "Index Comment")
 create constraint("products", "price_must_be_positive", check: "price > 0", comment: "Constraint Comment")
 create table("weather", prefix: "north_america", comment: "Table Comment") do
 add :city, :string, size: 40, comment: "Column Comment"
 timestamps()
 end
end

 Prefixes

Migrations support specifying a table prefix or index prefix which will
target either a schema (if using PostgreSQL) or a different database (if using
MySQL). If no prefix is provided, the default schema or database is used.
Any reference declared in the table migration refers by default to the table
with the same declared prefix. The prefix is specified in the table options:
def up do
 create table("weather", prefix: "north_america") do
 add :city, :string, size: 40
 add :temp_lo, :integer
 add :temp_hi, :integer
 add :prcp, :float
 add :group_id, references(:groups)

 timestamps()
 end

 create index("weather", [:city], prefix: "north_america")
end
Note: if using MySQL with a prefixed table, you must use the same prefix
for the references since cross-database references are not supported.
When using a prefixed table with either MySQL or PostgreSQL, you must use the
same prefix for the index field to ensure that you index the prefix-qualified
table.

 Transaction Callbacks

If possible, each migration runs inside a transaction. This is true for Postgres,
but not true for MySQL, as the latter does not support DDL transactions.
In some rare cases, you may need to execute some common behavior after beginning
a migration transaction, or before committing that transaction. For instance, one
might desire to set a lock_timeout for each lock in the migration transaction.
You can do so by defining after_begin/0 and before_commit/0 callbacks to
your migration.
However, if you need do so for every migration module, implement this callback
for every migration can be quite repetitive. Luckily, you can handle this by
providing your migration module:
defmodule MyApp.Migration do
 defmacro __using__(_) do
 quote do
 use Ecto.Migration

 def after_begin() do
 repo().query! "SET lock_timeout TO '5s'"
 end
 end
 end
end
Then in your migrations you can use MyApp.Migration to share this behavior
among all your migrations.

 Additional resources

	The Safe Ecto Migrations guide

 Summary

 Callbacks

 Ecto.Migrator - Ecto SQL v3.11.3

Ecto.Migrator

Lower level API for managing migrations.
EctoSQL provides three mix tasks for running and managing migrations:
	mix ecto.migrate - migrates a repository
	mix ecto.rollback - rolls back a particular migration
	mix ecto.migrations - shows all migrations and their status

Those tasks are built on top of the functions in this module.
While the tasks above cover most use cases, it may be necessary
from time to time to jump into the lower level API. For example,
if you are assembling an Elixir release, Mix is not available,
so this module provides a nice complement to still migrate your
system.
To learn more about migrations in general, see Ecto.Migration.

 Example: Running an individual migration

Imagine you have this migration:
defmodule MyApp.MigrationExample do
 use Ecto.Migration

 def up do
 execute "CREATE TABLE users(id serial PRIMARY_KEY, username text)"
 end

 def down do
 execute "DROP TABLE users"
 end
end
You can execute it manually with:
Ecto.Migrator.up(Repo, 20080906120000, MyApp.MigrationExample)

 Example: Running migrations in a release

Elixir v1.9 introduces mix release, which generates a self-contained
directory that consists of your application code, all of its dependencies,
plus the whole Erlang Virtual Machine (VM) and runtime.
When a release is assembled, Mix is no longer available inside a release
and therefore none of the Mix tasks. Users may still need a mechanism to
migrate their databases. This can be achieved with using the Ecto.Migrator
module:
defmodule MyApp.Release do
 @app :my_app

 def migrate do
 for repo <- repos() do
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :up, all: true))
 end
 end

 def rollback(repo, version) do
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :down, to: version))
 end

 defp repos do
 Application.load(@app)
 Application.fetch_env!(@app, :ecto_repos)
 end
end
The example above uses with_repo/3 to make sure the repository is
started and then runs all migrations up or a given migration down.
Note you will have to replace MyApp and :my_app on the first two
lines by your actual application name. Once the file above is added
to your application, you can assemble a new release and invoke the
commands above in the release root like this:
$ bin/my_app eval "MyApp.Release.migrate"
$ bin/my_app eval "MyApp.Release.rollback(MyApp.Repo, 20190417140000)"

 Example: Running migrations on application startup

Add the following to the top of your application children spec:
{Ecto.Migrator,
 repos: Application.fetch_env!(:my_app, :ecto_repos),
 skip: System.get_env("SKIP_MIGRATIONS") == "true"}
To skip migrations you can also pass skip: true or as in the example
set the environment variable SKIP_MIGRATIONS to a truthy value.
And all other options described in up/4 are allowed,
for example if you want to log the SQL commands,
and run migrations in a prefix:
{Ecto.Migrator,
 repos: Application.fetch_env!(:my_app, :ecto_repos),
 log_migrator_sql: true,
 prefix: "my_app"}
To roll back you'd do it normally:
$ mix ecto.rollback

 Summary

 Functions

 Ecto.Adapters.MyXQL - Ecto SQL v3.11.3

Ecto.Adapters.MyXQL

Adapter module for MySQL.
It uses MyXQL for communicating to the database.

 Options

MySQL options split in different categories described
below. All options can be given via the repository
configuration:

 Connection options

	:protocol - Set to :socket for using UNIX domain socket, or :tcp for TCP
(default: :socket)
	:socket - Connect to MySQL via UNIX sockets in the given path.
	:hostname - Server hostname
	:port - Server port (default: 3306)
	:username - Username
	:password - User password
	:database - the database to connect to
	:pool - The connection pool module, may be set to Ecto.Adapters.SQL.Sandbox
	:ssl - Set to true if ssl should be used (default: false)
	:ssl_opts - A list of ssl options, see Erlang's ssl docs
	:connect_timeout - The timeout for establishing new connections (default: 5000)
	:cli_protocol - The protocol used for the mysql client connection (default: "tcp").
This option is only used for mix ecto.load and mix ecto.dump,
via the mysql command. For more information, please check
MySQL docs
	:socket_options - Specifies socket configuration
	:show_sensitive_data_on_connection_error - show connection data and
configuration whenever there is an error attempting to connect to the
database

The :socket_options are particularly useful when configuring the size
of both send and receive buffers. For example, when Ecto starts with a
pool of 20 connections, the memory usage may quickly grow from 20MB to
50MB based on the operating system default values for TCP buffers. It is
advised to stick with the operating system defaults but they can be
tweaked if desired:
socket_options: [recbuf: 8192, sndbuf: 8192]
We also recommend developers to consult the MyXQL.start_link/1 documentation
for a complete listing of all supported options.

 Storage options

	:charset - the database encoding (default: "utf8mb4")
	:collation - the collation order
	:dump_path - where to place dumped structures
	:dump_prefixes - list of prefixes that will be included in the
structure dump. For MySQL, this list must be of length 1. Multiple
prefixes are not supported. When specified, the prefixes will have
their definitions dumped along with the data in their migration table.
When it is not specified, only the configured database and its migration
table are dumped.

 After connect callback

If you want to execute a callback as soon as connection is established
to the database, you can use the :after_connect configuration. For
example, in your repository configuration you can add:
after_connect: {MyXQL, :query!, ["SET variable = value", []]}
You can also specify your own module that will receive the MyXQL
connection as argument.

 Limitations

There are some limitations when using Ecto with MySQL that one
needs to be aware of.

 Engine

Tables created by Ecto are guaranteed to use InnoDB, regardless
of the MySQL version.

 UUIDs

MySQL does not support UUID types. Ecto emulates them by using
binary(16).

 Read after writes

Because MySQL does not support RETURNING clauses in INSERT and
UPDATE, it does not support the :read_after_writes option of
Ecto.Schema.field/3.

 DDL Transaction

MySQL does not support migrations inside transactions as it
automatically commits after some commands like CREATE TABLE.
Therefore MySQL migrations does not run inside transactions.

 Old MySQL versions

 JSON support

MySQL introduced a native JSON type in v5.7.8, if your server is
using this version or higher, you may use :map type for your
column in migration:
add :some_field, :map
If you're using older server versions, use a TEXT field instead:
add :some_field, :text
in either case, the adapter will automatically encode/decode the
value from JSON.

 usec in datetime

Old MySQL versions did not support usec in datetime while
more recent versions would round or truncate the usec value.
Therefore, in case the user decides to use microseconds in
datetimes and timestamps with MySQL, be aware of such
differences and consult the documentation for your MySQL
version.
If your version of MySQL supports microsecond precision, you
will be able to utilize Ecto's usec types.

 Multiple Result Support

MyXQL supports the execution of queries that return multiple
results, such as text queries with multiple statements separated
by semicolons or stored procedures. These can be executed with
Ecto.Adapters.SQL.query_many/4 or the YourRepo.query_many/3
shortcut.
Be default, these queries will be executed with the :query_type
option set to :text. To take advantage of prepared statements
when executing a stored procedure, set the :query_type option
to :binary.

 Ecto.Adapters.Postgres - Ecto SQL v3.11.3

Ecto.Adapters.Postgres

Adapter module for PostgreSQL.
It uses Postgrex for communicating to the database.

 Features

	Full query support (including joins, preloads and associations)
	Support for transactions
	Support for data migrations
	Support for ecto.create and ecto.drop operations
	Support for transactional tests via Ecto.Adapters.SQL

 Options

Postgres options split in different categories described
below. All options can be given via the repository
configuration:
config :your_app, YourApp.Repo,
 ...
The :prepare option may be specified per operation:
YourApp.Repo.all(Queryable, prepare: :unnamed)

 Migration options

	:migration_lock - prevent multiple nodes from running migrations at the same
time by obtaining a lock. The value :table_lock will lock migrations by wrapping
the entire migration inside a database transaction, including inserting the
migration version into the migration source (by default, "schema_migrations").
You may alternatively select :pg_advisory_lock which has the benefit
of allowing concurrent operations such as creating indexes. (default: :table_lock)

When using the :pg_advisory_lock migration lock strategy and Ecto cannot obtain
the lock due to another instance occupying the lock, Ecto will wait for 5 seconds
and then retry infinity times. This is configurable on the repo with keys
:migration_advisory_lock_retry_interval_ms and :migration_advisory_lock_max_tries.
If the retries are exhausted, the migration will fail.
Some downsides to using advisory locks is that some Postgres-compatible systems or plugins
may not support session level locks well and therefore result in inconsistent behavior.
For example, PgBouncer when using pool_modes other than session won't work well with
advisory locks. CockroachDB is another system that is designed in a way that advisory
locks don't make sense for their distributed database.

 Connection options

	:hostname - Server hostname
	:socket_dir - Connect to Postgres via UNIX sockets in the given directory
The socket name is derived based on the port. This is the preferred method
for configuring sockets and it takes precedence over the hostname. If you are
connecting to a socket outside of the Postgres convention, use :socket instead;
	:socket - Connect to Postgres via UNIX sockets in the given path.
This option takes precedence over the :hostname and :socket_dir
	:username - Username
	:password - User password
	:port - Server port (default: 5432)
	:database - the database to connect to
	:maintenance_database - Specifies the name of the database to connect to when
creating or dropping the database. Defaults to "postgres"
	:pool - The connection pool module, may be set to Ecto.Adapters.SQL.Sandbox
	:ssl - Set to true if ssl should be used (default: false)
	:ssl_opts - A list of ssl options, see Erlang's ssl docs
	:parameters - Keyword list of connection parameters
	:connect_timeout - The timeout for establishing new connections (default: 5000)
	:prepare - How to prepare queries, either :named to use named queries
or :unnamed to force unnamed queries (default: :named)
	:socket_options - Specifies socket configuration
	:show_sensitive_data_on_connection_error - show connection data and
configuration whenever there is an error attempting to connect to the
database

The :socket_options are particularly useful when configuring the size
of both send and receive buffers. For example, when Ecto starts with a
pool of 20 connections, the memory usage may quickly grow from 20MB to
50MB based on the operating system default values for TCP buffers. It is
advised to stick with the operating system defaults but they can be
tweaked if desired:
socket_options: [recbuf: 8192, sndbuf: 8192]
We also recommend developers to consult the Postgrex.start_link/1
documentation for a complete listing of all supported options.

 Storage options

	:encoding - the database encoding (default: "UTF8")
or :unspecified to remove encoding parameter (alternative engine compatibility)
	:template - the template to create the database from
	:lc_collate - the collation order
	:lc_ctype - the character classification
	:dump_path - where to place dumped structures
	dump_prefixes - list of prefixes that will be included in the structure dump.
When specified, the prefixes will have their definitions dumped along with the
data in their migration table. When it is not specified, the configured
database has the definitions dumped from all of its schemas but only
the data from the migration table from the public schema is included.
	:force_drop - force the database to be dropped even
if it has connections to it (requires PostgreSQL 13+)

 After connect callback

If you want to execute a callback as soon as connection is established
to the database, you can use the :after_connect configuration. For
example, in your repository configuration you can add:
after_connect: {Postgrex, :query!, ["SET search_path TO global_prefix", []]}
You can also specify your own module that will receive the Postgrex
connection as argument.

 Extensions

Both PostgreSQL and its adapter for Elixir, Postgrex, support an
extension system. If you want to use custom extensions for Postgrex
alongside Ecto, you must define a type module with your extensions.
Create a new file anywhere in your application with the following:
Postgrex.Types.define(MyApp.PostgresTypes,
 [MyExtension.Foo, MyExtensionBar] ++ Ecto.Adapters.Postgres.extensions())
Once your type module is defined, you can configure the repository to use it:
config :my_app, MyApp.Repo, types: MyApp.PostgresTypes

 Summary

 Functions

 Ecto.Adapters.Tds - Ecto SQL v3.11.3

Ecto.Adapters.Tds

Adapter module for MSSQL Server using the TDS protocol.

 Options

Tds options split in different categories described
below. All options can be given via the repository
configuration.

 Connection options

	:hostname - Server hostname
	:port - Server port (default: 1433)
	:username - Username
	:password - User password
	:database - the database to connect to
	:pool - The connection pool module, may be set to Ecto.Adapters.SQL.Sandbox
	:ssl - Set to true if ssl should be used (default: false)
	:ssl_opts - A list of ssl options, see Erlang's ssl docs
	:show_sensitive_data_on_connection_error - show connection data and
configuration whenever there is an error attempting to connect to the
database

We also recommend developers to consult the Tds.start_link/1 documentation
for a complete list of all supported options for driver.

 Storage options

	:collation - the database collation. Used during database creation but
it is ignored later

If you need collation other than Latin1, add tds_encoding as dependency to
your project mix.exs file then amend config/config.ex by adding:
config :tds, :text_encoder, Tds.Encoding
This should give you extended set of most encoding. For complete list check
Tds.Encoding documentation.

 After connect flags

After connecting to MSSQL server, TDS will check if there are any flags set in
connection options that should affect connection session behaviour. All flags are
MSSQL standard SET options. The following flags are currently supported:
	:set_language - sets session language (consult stored procedure output
 exec sp_helplanguage for valid values)
	:set_datefirst - number in range 1..7
	:set_dateformat - atom, one of :mdy | :dmy | :ymd | :ydm | :myd | :dym

	:set_deadlock_priority - atom, one of :low | :high | :normal | -10..10

	:set_lock_timeout - number in milliseconds > 0
	:set_remote_proc_transactions - atom, one of :on | :off

	:set_implicit_transactions - atom, one of :on | :off

	:set_allow_snapshot_isolation - atom, one of :on | :off
 (required if Repo.transaction(fn -> ... end, isolation_level: :snapshot) is used)

	:set_read_committed_snapshot - atom, one of :on | :off

 Limitations

 UUIDs

MSSQL server has slightly different binary storage format for UUIDs (uniqueidentifier).
If you use :binary_id, the proper choice is made. Otherwise you must use the Tds.Ecto.UUID
type. Avoid using Ecto.UUID since it may cause unpredictable application behaviour.

 SQL Char, VarChar and Text types

When working with binaries and strings,there are some limitations you should be aware of:
	Strings that should be stored in mentioned sql types must be encoded to column
codepage (defined in collation). If collation is different than database collation,
it is not possible to store correct value into database since the connection
respects the database collation. Ecto does not provide way to override parameter
codepage.

	If you need other than Latin1 or other than your database default collation, as
mentioned in "Storage Options" section, then manually encode strings using
Tds.Encoding.encode/2 into desired codepage and then tag parameter as :binary.
Please be aware that queries that use this approach in where clauses can be 10x slower
due increased logical reads in database.

	You can't store VarChar codepoints encoded in one collation/codepage to column that
is encoded in different collation/codepage. You will always get wrong result. This is
not adapter or driver limitation but rather how string encoding works for single byte
encoded strings in MSSQL server. Don't be confused if you are always seeing latin1 chars,
they are simply in each codepoint table.

In particular, if a field has the type :text, only raw binaries will be allowed.
To avoid above limitations always use :string (NVarChar) type for text if possible.
If you really need to use VarChar's column type, you can use the Tds.Ecto.VarChar
Ecto type.

 JSON support

Even though the adapter will convert :map fields into JSON back and forth,
actual value is stored in NVarChar column.

 Query hints and table hints

MSSQL supports both query hints and table hints: https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query
For Ecto compatibility, the query hints must be given via the lock option, and they
will be translated to MSSQL's "OPTION". If you need to pass multiple options, you
can separate them by comma:
from query, lock: "HASH GROUP, FAST 10"
Table hints are specified as a list alongside a from or join:
from query, hints: ["INDEX (IX_Employee_ManagerID)"]
The :migration_lock will be treated as a table hint and defaults to "UPDLOCK".

 Multi Repo calls in transactions

To avoid deadlocks in your app, we exposed :isolation_level repo transaction option.
This will tell to SQL Server Transaction Manager how to begin transaction.
By default, if this option is omitted, isolation level is set to :read_committed.
Any attempt to manually set the transaction isolation via queries, such as
Ecto.Adapter.SQL.query("SET TRANSACTION ISOLATION LEVEL XYZ")
will fail once explicit transaction is started using Ecto.Repo.transaction/2
and reset back to :read_committed.
There is Ecto.Query.lock/3 function can help by setting it to WITH(NOLOCK).
This should allow you to do eventually consistent reads and avoid locks on given
table if you don't need to write to database.
NOTE: after explicit transaction ends (commit or rollback) implicit transactions
will run as READ_COMMITTED.

 Tds.Ecto.UUID - Ecto SQL v3.11.3

Tds.Ecto.UUID

An TDS adapter type for UUIDs strings.
If you are using Tds adapter and UUIDs in your project, instead of Ecto.UUID
you should use Tds.Ecto.UUID to generate correct bytes that should be stored
in database.

 Summary

 Types

 Tds.Ecto.VarChar - Ecto SQL v3.11.3

Tds.Ecto.VarChar

An Tds adapter Ecto Type that wraps erlang string into tuple so TDS driver
can understand if erlang string should be encoded as NVarChar or Varchar.
Due to some limitations in Ecto and Tds driver, it is not possible to
support collations other than the one set on connection during login.
Please be aware of this limitation if you plan to store varchar values in
your database using Ecto since you will probably lose some codepoints in
the value during encoding. Instead use tds_encoding library and first
encode value and then annotate it as :binary by calling Ecto.Query.API.type/2
in your query. This way all codepoints will be properly preserved during
insert to database.

 Summary

 Types

 Ecto.Adapter.Migration - Ecto SQL v3.11.3

Ecto.Adapter.Migration behaviour

Specifies the adapter migrations API.

 Summary

 Types

 Ecto.Adapter.Structure - Ecto SQL v3.11.3

Ecto.Adapter.Structure behaviour

Specifies the adapter structure (dump/load) API.

 Summary

 Callbacks

 Ecto.Adapters.SQL.Connection - Ecto SQL v3.11.3

Ecto.Adapters.SQL.Connection behaviour

Specifies the behaviour to be implemented by all SQL connections.

 Summary

 Types

 Ecto.Migration.Command - Ecto SQL v3.11.3

Ecto.Migration.Command

Used internally by adapters.
This represents the up and down legs of a reversible raw command
that is usually defined with Ecto.Migration.execute/1.
To define a reversible command in a migration, see Ecto.Migration.execute/2.

 Summary

 Types

 Ecto.Migration.Constraint - Ecto SQL v3.11.3

Ecto.Migration.Constraint

Used internally by adapters.
To define a constraint in a migration, see Ecto.Migration.constraint/3.

 Summary

 Types

 Ecto.Migration.Index - Ecto SQL v3.11.3

Ecto.Migration.Index

Used internally by adapters.
To define an index in a migration, see Ecto.Migration.index/3.

 Summary

 Types

 Ecto.Migration.Reference - Ecto SQL v3.11.3

Ecto.Migration.Reference

Used internally by adapters.
To define a reference in a migration, see Ecto.Migration.references/2.

 Summary

 Types

 Ecto.Migration.Table - Ecto SQL v3.11.3

Ecto.Migration.Table

Used internally by adapters.
To define a table in a migration, see Ecto.Migration.table/2.

 Summary

 Types

 mix ecto.dump - Ecto SQL v3.11.3

mix ecto.dump

Dumps the current environment's database structure for the
given repository into a structure file.
The repository must be set under :ecto_repos in the
current app configuration or given via the -r option.
This task needs some shell utility to be present on the machine
running the task.
	Database	Utility needed
	PostgreSQL	pg_dump
	MySQL	mysqldump

 Example

$ mix ecto.dump

 Command line options

	-r, --repo - the repo to load the structure info from
	-d, --dump-path - the path of the dump file to create
	-q, --quiet - run the command quietly
	--no-compile - does not compile applications before dumping
	--no-deps-check - does not check dependencies before dumping
	--prefix - prefix that will be included in the structure dump.
Can include multiple prefixes (ex. --prefix foo --prefix bar) with
PostgreSQL but not MySQL. When specified, the prefixes will have
their definitions dumped along with the data in their migration table.
The default behavior is dependent on the adapter for backwards compatibility
reasons. For PostgreSQL, the configured database has the definitions dumped
from all of its schemas but only the data from the migration table
from the public schema is included. For MySQL, only the configured
database and its migration table are dumped.

 mix ecto.gen.migration - Ecto SQL v3.11.3

mix ecto.gen.migration

Generates a migration.
The repository must be set under :ecto_repos in the
current app configuration or given via the -r option.

 Examples

$ mix ecto.gen.migration add_posts_table
$ mix ecto.gen.migration add_posts_table -r Custom.Repo

The generated migration filename will be prefixed with the current
timestamp in UTC which is used for versioning and ordering.
By default, the migration will be generated to the
"priv/YOUR_REPO/migrations" directory of the current application
but it can be configured to be any subdirectory of priv by
specifying the :priv key under the repository configuration.
This generator will automatically open the generated file if
you have ECTO_EDITOR set in your environment variable.

 Command line options

	-r, --repo - the repo to generate migration for
	--no-compile - does not compile applications before running
	--no-deps-check - does not check dependencies before running
	--migrations-path - the path to run the migrations from, defaults to priv/repo/migrations

 Configuration

If the current app configuration specifies a custom migration module
the generated migration code will use that rather than the default
Ecto.Migration:
config :ecto_sql, migration_module: MyApplication.CustomMigrationModule

 mix ecto.load - Ecto SQL v3.11.3

mix ecto.load

Loads the current environment's database structure for the
given repository from a previously dumped structure file.
The repository must be set under :ecto_repos in the
current app configuration or given via the -r option.
This task needs some shell utility to be present on the machine
running the task.
	Database	Utility needed
	PostgreSQL	psql
	MySQL	mysql

 Example

$ mix ecto.load

 Command line options

	-r, --repo - the repo to load the structure info into
	-d, --dump-path - the path of the dump file to load from
	-q, --quiet - run the command quietly
	-f, --force - do not ask for confirmation when loading data.
Configuration is asked only when :start_permanent is set to true
(typically in production)
	--no-compile - does not compile applications before loading
	--no-deps-check - does not check dependencies before loading
	--skip-if-loaded - does not load the dump file if the repo has the migrations table up

 mix ecto.migrate - Ecto SQL v3.11.3

mix ecto.migrate

Runs the pending migrations for the given repository.
Migrations are expected at "priv/YOUR_REPO/migrations" directory
of the current application, where "YOUR_REPO" is the last segment
in your repository name. For example, the repository MyApp.Repo
will use "priv/repo/migrations". The repository Whatever.MyRepo
will use "priv/my_repo/migrations".
You can configure a repository to use another directory by specifying
the :priv key under the repository configuration. The "migrations"
part will be automatically appended to it. For instance, to use
"priv/custom_repo/migrations":
config :my_app, MyApp.Repo, priv: "priv/custom_repo"
This task runs all pending migrations by default. To migrate up to a
specific version number, supply --to version_number. To migrate a
specific number of times, use --step n.
The repositories to migrate are the ones specified under the
:ecto_repos option in the current app configuration. However,
if the -r option is given, it replaces the :ecto_repos config.
Since Ecto tasks can only be executed once, if you need to migrate
multiple repositories, set :ecto_repos accordingly or pass the -r
flag multiple times.
If a repository has not yet been started, one will be started outside
your application supervision tree and shutdown afterwards.

 Examples

$ mix ecto.migrate
$ mix ecto.migrate -r Custom.Repo

$ mix ecto.migrate -n 3
$ mix ecto.migrate --step 3